Getting one of the best SSDs for your system is key because the easiest way to slow down a PC with one of the best CPUs is to pair it with slow storage. Your processor can handle billions of cycles a second, but it often spends a lot of time waiting for your drive to feed it data. Hard drives are particularly sluggish because they have platters that have to spin up and a read / right arm that has to find its way physically to the data sectors you're currently seeking. To get optimal performance, you need a good solid-state drive (SSD).
You can check out our feature for much more on the differences between hard drives and SSDs. While SSDs are almost always faster, there are still instances (like bulk storage) where hard drives are definitely worth considering. Because 10TB hard drives can be had for under $200 and a 4TB SSD will set you back over $400.
If you already know about drive types and want specific recommendations, check out our Best SSDs page. And if you're after an external drive or SSD for portable storage or back up, be sure to check our Best External Drives page. But if you don't have a PhD in SSD, here are a few things you need to consider when shopping.
As drives like Intel's 660p and its successor the Intel 665p start to undercut mainstream drives on the old SATA interface while delivering more speed, this could be the beginning of the end of our old friend, Serial ATA. That said, Samsung recently released the 870 EVO, so SATA isn't dead yet. And existing SATA drives will have to continue falling in price as well, in order to at least compete on price, since they can't hope to keep up with NVMe drives on performance.
But NVMe PCIe 3.0 drives, once the fastest storage around, have been outclassed by PCIe 4.0 M.2 SSDs from the likes of Gigabyte, Corsair, Patriot and Samsung. These drives indeed up sequential speeds dramatically (thanks to a doubling of the PCIe bus bandwidth). But you'll need an AMD X570 or B550 motherboard to run one of these drives at their top speed, or an Intel Z590 motherboard paired with one of Intel's upcoming Rocket Lake-S processors. And in many ways, beyond the obvious bump in sequential performance, users might not see much in the way of real-world benefits from these drives. But there's no doubt that the next generation of PCIe 4.0 drives, like WD Black's SN850, are impressively agile.
Here are four quick tips, followed by our detailed answers to many FAQs:
Most consumer drives range from 120GB to 2TB. While 120GB drives are the cheapest, they aren't roomy enough to hold a lot of software and are usually slower than their higher-capacity counterparts. Many companies have begun phasing out those low capacity. It costs as little as $15 extra to step up from 120 to 250GB size, and that's money well spent. The delta between 250GB and 500GB drives can be small as well. The sweet spot between price, performance and capacity for most users used to be 500GB, but increasingly 1TB is becoming the better choice --particularly when 1TB drives slip to $100 or less.
There are also an increasing number of drives (primarily from Samsung) with capacities above 2TB. But they’re typically extremely expensive in the extreme (over $400/£400), so they’re really only worthwhile for professional users who need space and speed and aren’t averse to paying for it.
Solid-state drives these days come in several different form factors and operate across several possible hardware and software connections. What kind of drive you need depends on what device you have (or are intending on buying). If you own one of the best gaming PCs or are building a PC with a recent mid-to-high-end motherboard, your system may be able to incorporate most (or all) modern drive types.
Also, modern slim laptops and convertibles have mostly shifted solely to the gum-stick-shaped M.2 form factor, with no space for a traditional 2.5-inch laptop-style drive. And in an increasing number of cases, laptop makers are soldering the storage directly to the board, so you can’t upgrade at all. So you’ll definitely want to consult your device manual or check Crucial's Advisor Tool to sort out what your options are before buying.
SSDs come in three main form factors, plus one uncommon outlier.
Types of SSDs.
If your desktop is compact and you already have a graphics card installed, you may be out of luck. But if you do have room in your modern desktop and a spare slot, these drives can be among the fastest available (take the Intel Optane 900p, for example), due in large part to their extra surface area, allowing for better cooling. Moving data at extreme speeds generates a fair bit of heat.
While most M.2 drives are 22mm wide and 80mm long, there are some that are shorter or longer. You can tell by the four or five-digit number in their names, with the first two digits representing width and the others showing length. The most common size is labeled M.2 Type-2280. Though laptops will usually only work with one size, many desktop motherboards have anchor points for longer and shorter drives.
The largest M.2 drives are 2, 4, or even 8TB. So, if you have a generous budget and need a ton of storage space, there's an M.2 for you.
Strap in, because this bit is more complicated than it should be. As noted earlier, 2.5-inch SSDs run on the Serial ATA (SATA) interface, which was designed for hard drives (and launched way back in 2000), while add-in-card drives work over the faster PCI Express bus, which has more bandwidth for things like graphics cards.
M.2 drives can work either over SATA or PCI Express, depending on the drive. And the fastest M.2 drives also support NVMe, a protocol that was designed specifically for fast modern storage. The tricky bit (OK, another tricky bit) is that an M.2 drive could be SATA-based, PCIe-based without NVMe support, or PCIe-based with NVMe support. That said, most high-end M.2 SSDs launched in recent years support NVMe.
Both M.2 drives and the corresponding M.2 connectors on motherboards look very similar, regardless of what they support. So be sure to double-check the manual for your motherboard, laptop, or convertible, as well as what a given drive supports, before buying.
If your daily tasks consist of web browsing, office applications, or even gaming, most NVMe SSDs aren’t going to be noticeably faster than less-expensive SATA models. If your daily tasks consist of heavier work, like large file transfers, videos or high-end photo editing, transcoding, or compression/decompression, then you would be better served stepping up to an NVMe SSD. These SSDs provide up to five times more bandwidth than SATA models (and double that if you opt for a PCIe 4.0 NVMe drive), which boosts performance in heavier productivity applications.
Also, some NVMe drives (like Intel's SSD 660p) are edging below the price of many SATA drives. So if your device supports NVMe and you find a good deal on a drive, you may want to consider NVMe as an option even if you don't have a strong need for the extra speed.
If you’re a desktop user, or you have a gaming laptop with multiple drives and you want lots of capacity, you’re better off opting for a pair of smaller SSDs, which will often save you hundreds of dollars while still offering up roughly the same storage space and speed. Until pricing drops and we see more competition, 4TB and larger drives will be relegated to professionals and enthusiasts with very deep pockets.
If you’re a desktop user after the best possible performance, then you probably don't care how much juice you're using. But for laptop and convertible tablet owners, drive efficiency is more important than speed—especially if you want all-day battery life.
Advertisement
Choosing an extremely efficient drive like Samsung’s 860 EVO over a faster-but-power-hungry NVMe drive (like, say, the Samsung 960 EVO) can gain you significantly more unplugged run time. And higher-capacity models can draw more power than less-spacious drives, simply because there are more NAND packages on bigger drives to write your data to.
While the above advice is true in a general sense, some drives can buck trends, and technology is always advancing and changing the landscape. If battery life is key to your drive-buying considerations, be sure to consult the power consumption testing we do on every SSD we test.
Think of the controller as the processor of your drive. It routes your reads and writes and performs other key drive performance and maintenance tasks. It can be interesting to dive deep into specific controller types and specs. But for most people, it’s enough to know that, much like PCs, more cores are better for higher-performing, higher-capacity drives.
While the controller obviously plays a big role in performance, unless you like to get into the minute details of how specific drives compare against each other, it’s better to check out our reviews to see how a drive performs overall, rather than focusing too much on the controller.
When shopping for an SSD for general computing use in a desktop or laptop, you don't expressly need to pay attention to the type of storage that’s inside the drive. In fact, with most options on the market these days, you don’t have much a choice, anyway. But if you’re curious about what’s in those flash packages inside your drive, we’ll walk you through various types below. Some of them are far less common than they used to be, and some are becoming the de facto standard.
These are two other areas where, for the most part, buyers looking for a drive for general-purpose computing don’t need to dive too deep, unless they want to. All flash memory has a limited life span, meaning after any given storage cell is written to a certain number of times, it will stop holding data. And drive makers often list a drive’s rated endurance in total terabytes written (TBW), or drive writes per day (DWPD).
But most drives feature “over provisioning,” which portions off part of the drive’s capacity as a kind of backup. As the years pass and cells start to die, the drive will move your data off the worn-out cells to these fresh new ones, thereby greatly extending the usable lifespan of the drive. Generally, unless you’re putting your SSD into a server or some other scenario where it’s getting written to nearly constantly (24/7), all of today’s drives are rated with enough endurance to function for at least 3-5 years, if not more.
If you plan on using your drive for much longer than that, or you know that you’ll be writing to the drive far more than the average computer user, you'll probably want to avoid QLC drives in particular, and invest in a model with higher-than-average endurance ratings, and/or a longer warranty. Samsung’s Pro drives, for instance, typically have high endurance ratings and long warranties. But again, the vast majority of computer users should not have to worry about a drive’s endurance.
Now that you understand all the important details that separate SSDs and SSD types, your choices should be clear. Remember that high-end drives, while technically faster, won’t often feel speedier than less-spendy options in common tasks.
So unless you’re chasing extreme speed for professional or enthusiast reasons, it’s often best to choose an affordable mainstream drive that has the capacity you need at a price you can afford. Stepping up to any modern SSD over an old-school spinning hard drive is a huge difference that you’ll instantly notice. But as with most PC hardware, there are diminishing returns for mainstream users as you climb up toward the top of the product stack.